Monosynaptic EPSPs in primate lumbar motoneurons.

TitleMonosynaptic EPSPs in primate lumbar motoneurons.
Publication TypeJournal Article
Year of Publication1993
AuthorsCarp, JS
JournalJournal of neurophysiology
Volume70
Pagination1585–1592
Date Published10/1993
ISSN0022-3077
KeywordsSynapses
Abstract

1. Homonymous and heteronymous monosynaptic composite excitatory postsynaptic potentials (EPSPs) were evaluated by intracellular recordings from 89 motoneurons innervating triceps surae (n = 59) and more distal (n = 30) muscles in 14 pentobarbital-anesthetized monkeys (Macaca nemestrina). 2. Homonymous EPSPs were found in all motoneurons tested. The mean values +/- SD for maximum EPSP amplitude of triceps surae motoneurons were 2.5 +/- 1.3, 1.8 +/- 1.3 and 4.5 +/- 2.0 mV for medial gastrocnemius, lateral gastrocnemius, and soleus motoneurons, respectively. Heteronymous EPSPs were almost always smaller than their corresponding homonymous EPSPs. 3. Triceps surae EPSP amplitude was larger in motoneurons with higher input resistance. However, this relationship was weak, suggesting that factors related to input resistance play a limited role in determining the magnitude of the EPSP. 4. The mean ratio +/- SD of the amplitude of the EPSP elicited by combined stimulation of all triceps surae nerves to the amplitude of the algebraic sum of the three individual EPSPs was 0.95 +/- 0.05. This ratio was greater in motoneurons with lower rheobase. 5. Some patterns of synaptic connectivity in the macaque are consistent with previously reported differences between primates and cat (e.g., heteronymous EPSPs elicited by medial gastrocnemius nerve stimulation in soleus motoneurons are small in macaque and other primates but large in cat). However, no overall pattern emerges from a comparison of the similarities and differences in EPSPs among species in which they have been studied (i.e., macaque, baboon, and cat). That is, there are no two species in which EPSP properties are consistently similar to each other, but different from those of the third species.(ABSTRACT TRUNCATED AT 250 WORDS)

URLhttp://www.ncbi.nlm.nih.gov/pubmed/8283216

You are here