EEG-based communication and control: speed-accuracy relationships.

TitleEEG-based communication and control: speed-accuracy relationships.
Publication TypeJournal Article
Year of Publication2003
AuthorsMcFarland, DJ, Wolpaw, J
JournalApplied psychophysiology and biofeedback
Volume28
Pagination217–231
Date Published09/2003
ISSN1090-0586
KeywordsVideo Recording
Abstract

People can learn to control mu (8-12 Hz) or beta (18-25 Hz) rhythm amplitude in the EEG recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. In our current EEG-based brain-computer interface (BCI) system, cursor movement is a linear function of mu or beta rhythm amplitude. In order to maximize the participant's control over the direction of cursor movement, the intercept in this equation is kept equal to the mean amplitude of recent performance. Selection of the optimal slope, or gain, which determines the magnitude of the individual cursor movements, is a more difficult problem. This study examined the relationship between gain and accuracy in a 1-dimensional EEG-based cursor movement task in which individuals select among 2 or more choices by holding the cursor at the desired choice for a fixed period of time (i.e., the dwell time). With 4 targets arranged in a vertical column on the screen, large gains favored the end targets whereas smaller gains favored the central targets. In addition, manipulating gain and dwell time within participants produces results that are in agreement with simulations based on a simple theoretical model of performance. Optimal performance occurs when correct selection of targets is uniform across position. Thus, it is desirable to remove any trend in the function relating accuracy to target position. We evaluated a controller that is designed to minimize the linear and quadratic trends in the accuracy with which participants hit the 4 targets. These results indicate that gain should be adjusted to the individual participants, and suggest that continual online gain adaptation could increase the speed and accuracy of EEG-based cursor control.

URLhttp://www.ncbi.nlm.nih.gov/pubmed/12964453
DOI10.1023/A:1024685214655

You are here