Publications

Export 795 results:
Filters: Filter is   [Clear All Filters]
2025
Hardesty RL, Mojtabavi H, Gemoets DE, Wolpaw JR. Bidirectional locomotion induces asymmetric limb adaptations. Journal of neurophysiology. 2025;134:1774–1784.
Rueda-Parra S, Caruso HA, Norton PL, Gemoets DE, Norton JJS. Brain-computer interface (BCI)-based identification of congenital red-green color vision deficiencies. Authorea Preprints. 2025;.
Hardesty R, Rueda-Parra S, Wolpaw J, Brangaccio J. Characterization of cutaneous reflexes elicited from saphenous nerve stimulation. bioRxiv. 2025;:2025–10.
Staveland BR, Oberschulte J, Kim-McManus O, Willie JT, Brunner P, Dastjerdi M, et al.. Circuit dynamics of approach-avoidance conflict in humans. bioRxiv. 2025;.
Tan G, Huguenard AL, Donovan KM, Demarest P, Liu X, Li Z, et al.. The effect of transcutaneous auricular vagus nerve stimulation on cardiovascular function in subarachnoid hemorrhage patients: A randomized trial. Elife. 2025;13.
Gupta D, Brangaccio J, Mojtabavi H, Wolpaw J, Hill NJ. Extracting robust single-trial somatosensory evoked potentials for non-invasive brain computer interfaces. Journal of Neural Engineering. 2025;22:056004.
Gupta D, Brangaccio J, Mojtabavi H, Carp JS, Wolpaw JR, N Hill J. Frequency dependence of cortical somatosensory evoked response to peripheral nerve stimulation with controlled afferent excitation. Journal of Neural Engineering. 2025;22:026035.
Cao R, Brunner P, Brandmeir NJ, Willie JT, Wang S. A human single-neuron dataset for object recognition. Sci Data. 2025;12(1):79.
Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface Therapy Induces Broad Upper Extremity Motor Rehabilitation in Chronic Stroke. Neurorehabil Neural Repair. 2025;39(1):74-86.
Brangaccio JA, Gupta D, Mojtabavi H, Hardesty RL, Hill NJ, Carp JS, et al.. Soleus H-reflex size versus stimulation rate in the presence of background muscle activity: a methodological study. Experimental brain research. 2025;243:215.
Hardesty RL, Mojtabavi H, Wolpaw JR. Spinal reflexes: a potential target for treating hemiparetic gait. J Neurophysiol. 2025;134(1):290-291.
Alkhoury L, Scanavini G, Swissler P, Shah SA, Gupta D, N Hill J. SyncGenie: A programmable event synchronization device for neuroscience research. HardwareX. 2025;21:e00619.
Farrens AJ, Garcia-Fernandez L, Rojas RDiaz, Estrada JObeso, Reinsdorf D, Chan V, et al.. Tailored robotic training improves hand function and proprioceptive processing in stroke survivors with proprioceptive deficits: A randomized controlled trial. arXiv preprint arXiv:2511.00259. 2025;.
Rueda-Parra S, Hardesty R, Gemoets DE, N Hill J, Gupta D. Test-retest reliability of kinematic and EEG low-beta spectral features in a robot-based arm movement task. Biomedical physics & engineering express. 2025;11.
2024
Blenkmann AOmar, Leske SLiliana, Llorens A, Lin JJ, Chang EF, Brunner P, et al.. Anatomical registration of intracranial electrodes. Robust model-based localization and deformable smooth brain-shift compensation methods. Journal of Neuroscience Methods. 2024;404:110056.
Blenkmann AOmar, Leske SLiliana, Llorens A, Lin JJ, Chang EF, Brunner P, et al.. Anatomical registration of intracranial electrodes. Robust model-based localization and deformable smooth brain-shift compensation methods. J Neurosci Methods. 2024;404:110056.
Hardesty RL, Motjabavi H, Gemoets DE, Wolpaw JR. Bidirectional locomotion induces unilateral limb adaptations. bioRxiv. 2024;.
Schiff ND, Diringer M, Diserens K, Edlow BL, Gosseries O, N Hill J, et al.. Brain-Computer Interfaces for Communication in Patients with Disorders of Consciousness: A Gap Analysis and Scientific Roadmap. Neurocrit Care. 2024;.
Trevino G, Lee JJ, Shimony JS, Luckett PH, Leuthardt EC. Complexity organization of resting-state functional-MRI networks. Hum Brain Mapp. 2024;45(12):e26809.
Cross ZR, Gray SM, Dede AJO, Rivera YM, Yin Q, Vahidi P, et al.. The development of aperiodic neural activity in the human brain. bioRxiv. 2024;.
Tan G, Adams J, Donovan K, Demarest P, Willie JT, Brunner P, et al.. Does vibrotactile stimulation of the auricular vagus nerve enhance working memory? A behavioral and physiological investigation. Brain Stimul. 2024;17(2):460-468.
Tan G, Adams J, Donovan K, Demarest P, Willie JT, Brunner P, et al.. Does vibrotactile stimulation of the auricular vagus nerve enhance working memory? A behavioral and physiological investigation. Brain Stimulation. 2024;17:460–468.
Tan G, Adams J, Donovan K, Demarest P, Willie JT, Brunner P, et al.. Does Vibrotactile Stimulation of the Auricular Vagus Nerve Enhance Working Memory? A Behavioral and Physiological Investigation. bioRxiv. 2024;.

Pages

You are here